Software Aging Forecasting Using Time Series Model
نویسندگان
چکیده
With the emergence of virtualization and cloud computing technologies, several services are housed on virtualization platform. Virtualization is the technology that many cloud service providers rely on for efficient management and coordination of the resource pool. As essential services are also housed on cloud platform, it is necessary to ensure continuous availability by implementing all necessary measures. Windows Active Directory is one such service that Microsoft developed for Windows domain networks. It is included in Windows Server operating systems as a set of processes and services for authentication and authorization of users and computers in a Windows domain type network. The service is required to run continuously without downtime. As a result, there are chances of accumulation of errors or garbage leading to software aging which in turn may lead to system failure and associated consequences. This results in software aging. In this work, software aging patterns of Windows active directory service is studied. Software aging of active directory needs to be predicted properly so that rejuvenation can be triggered to ensure continuous service delivery. In order to predict the accurate time, a model that uses time series forecasting technique is built.
منابع مشابه
Forecasting flow discharge through time series analysis using SARIMA model for drought conditions, a case study of Jamishan River
Nowadays, water supply is more limited and providing water is more difficult due to increasing population and demand for water. Thus, due to rainfall shortage and impacts of drought, the need for forecasting monthly and annual rainfall and flow discharge through time series analysis is acutely felt. One of the key assumption in time series is their static condition. However, hydrological time s...
متن کاملComparative Study Among Different Time Series Models for Monthly Rainfall Forecasting in Shiraz Synoptic Station, Iran
In this research, monthly rainfall of Shiraz synoptic station from March 1971 to February 2016 was studied using different time series models by ITSM Software. Results showed that the ARMA (1,12) model based on Hannan-Rissanen method was the best model which fitted to the data. Then, to assess the verification and accuracy of the model, the monthly rainfall for 60 months (from March 2011 to Feb...
متن کاملResidual analysis using Fourier series transform in Fuzzy time series model
In this paper, we propose a new residual analysis method using Fourier series transform into fuzzy time series model for improving the forecasting performance. This hybrid model takes advantage of the high predictable power of fuzzy time series model and Fourier series transform to fit the estimated residuals into frequency spectra, select the low-frequency terms, filter out high-frequency term...
متن کاملRainfall-runoff process modeling using time series transfer function
Extended Abstract 1- Introduction Nowadays, forecasting and modeling the rainfall-runoff process is essential for planning and managing water resources. Rainfall-Runoff hydrologic models provide simplified characterizations of the real-world system. A wide range of rainfall-runoff models is currently used by researchers and experts. These models are mainly developed and applied for simulation...
متن کاملAN EXTENDED FUZZY ARTIFICIAL NEURAL NETWORKS MODEL FOR TIME SERIES FORECASTING
Improving time series forecastingaccuracy is an important yet often difficult task.Both theoretical and empirical findings haveindicated that integration of several models is an effectiveway to improve predictive performance, especiallywhen the models in combination are quite different. In this paper,a model of the hybrid artificial neural networks andfuzzy model is proposed for time series for...
متن کامل